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Abstract. We investigate the relation between the binding energy and the Fermi energy and between
different expressions for the pressure in cold nuclear matter. For a self-consistent calculation based on a Φ
derivable T -matrix approximation with off-shell propagators, the thermodynamic relations are well satisfied
unlike for a G-matrix or a T -matrix approach using quasi-particle propagators in the ladder diagrams.

PACS. 21.65.+f Nuclear matter

1 Introduction

Nuclear matter calculations are usually performed using
Brueckner-type resummation of ladder diagrams. Works
using realistic interactions lead to reasonable results for
the saturation density and the binding energy at the sat-
uration point. However, in violation of the Hugenholz-Van
Hove theorem the resulting Fermi energy EF at the satu-
ration point is usually very different from the binding en-
ergy per particle E/N . It is a manifestation of a general
violation of thermodynamic consistency by the G-matrix
approximation. The problem was discussed in the litera-
ture [1,2] and improvements due to rearrangement terms
were invoked but without removing the discrepancy alto-
gether. Improvement of the fulfillment of the Hugenholz-
Van Hove property with respect to the G-matrix approxi-
mation is observed when using the quasi-particle T -matrix
approach, or correction from hole-hole lines [1,2].

On the other hand, it is known that the exact the-
ory [3–5] should fulfill certain thermodynamical relations.
The simplest one being the exact equality of the Fermi
momenta for the free and the interacting theory. Another
statement that we shall consider in the present work is
the equivalence of two ways of calculating the pressure in
a system at zero temperature:

P = ρ2 ∂(E/N)
∂ρ

= (1)

ρ(EF − E/N) , (2)

where ρ is the nuclear matter density. From the above
relation follows that, at the saturation point where (E/N)
has a minimum,

EF = E/N , (3)
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i.e., the Hugenholz-Van Hove property. These relations are
satisfied by the exact theory and can also be satisfied in a
perturbative calculation to a given order of the expansion
parameter.

Non-perturbative approximations schemes which are
thermodynamically consistent are known [5]. Baym has
shown that the condition of the thermodynamical consis-
tency of an approximation can be related to the so-called
Φ derivability. The self-energy is constructed as a func-
tional derivative of a functional Φ of dressed propagators
G(k) and bare vertices

Σ(k) =
δΦ

δG(k)
. (4)

The approximate functional Φ is defined by a set of two-
particle irreducible diagrams. Φ derivable approximations
to the self-energy are also termed as conserving approx-
imations since they lead to conservation laws in corre-
sponding transport equations [6]. In particular, different
types of non-perturbative approximations can be identi-
fied for the generating functional. Below, we shall con-
sider two of them: the Hartree-Fock approximation and
the T -matrix approximation (fig. 1). Diagrams for the cor-
responding self-energies obtained by taking a functional
derivative are also shown in fig. 1. It must be stressed again
that the propagators in the diagrams for Φ are dressed self-
consistently by the self-energy (4). For the Hartree-Fock
approximation it means only a shift in the single-particle
energies, but for the T -matrix approach one has to take
into account the full spectral function for the propaga-
tors in the calculation of Φ or Σ. Calculations involving
off-shell propagators in the T -matrix ladder have been re-
cently performed [7–10] both in the normal and in the
superfluid phase. Below, we shall restrict ourselves to zero-
temperature normal nuclear matter.
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Fig. 1. Diagrams contributing to the generating functional Φ
in the Hartree-Fock approximation (a)) and in the T -matrix
approximation (c)). The corresponding diagrams for the self-
energy are shown in parts b) and d), respectively.

2 Approximations for the nuclear matter
problem

We shall compare different calculation of cold nuclear mat-
ter with a model interaction. We choose a separable rank
two parameterization of Mongan type [11] in the S wave
with softened repulsive core

Vα(k, p) = λr
αgr

α(k)gr
α(p) − λa

αga
α(k)ga

α(p), (5)

with gr,a(p) = 1
p2+β2

r,a
and

λr = 29.6GeV2, βr = 639MeV,

λa = 2.91GeV2, βa = 352MeV, for α = S1
0 ,

λr = 5.27GeV2, βr = 471MeV,

λa = 4.78GeV2, βa = 376MeV, for α = S3
1 . (6)

With this interaction, nuclear matter properties will
be calculated within the following approximations:

– Brueckner resummation of particle-particle ladder di-
agrams with in medium G-matrix

〈p|G(P, Ω)|p′〉 = V (p,p
′
)

+
∫

d3q

(2π)3
V (p,q)

(1 − f(ωp1))(1 − f(ωp2))
Ω − ωp1 − ωp2

×〈q|G(P, Ω)|p′〉, (7)

where p1,2 = P/2±q. G-matrix resummation allows to
define single-particle energies and gives relatively good
results for the saturation properties of nuclear matter.
In the above equation and in the following we skip
the spin, isospin indices which are implicitly summed
over. Medium effects enter through the Pauli blocking
factors 1 − f(ωp) in the numerator and single-particle
energies ωp in the denominator (f(ωp) = Θ(EF−ωp)).
The single-particle energies ωp, are self-consistently de-
fined by the G-matrix

ωp =
p2

2m
+ U(p, ωp), (8)

where

U(p, ω) =
∫

d3k

(2π)3
f(ωk)

×〈(p − k)/2|G(|p + k|, ωk + ω)|(p − k)/2〉. (9)

For the G-matrix approach, much more realistic po-
tentials are commonly used in nuclear matter calcu-
lations. However, the aim of the present paper is to
compare different approximation schemes for a simple
separable potential. The violation of the Hugenholz-
Van Hove theorem is general for all G-matrix calcula-
tion independent of the potential assumed [1,12], also
for realistic non-separable potentials. There is some de-
pendence on the assumed single-particle energies [1].

– In the quasi-particle T -matrix approximation [13,14],
the ladder diagrams include both particle-particle and
hole-hole propagation. The Pauli blocking factor (1 −
f(ωp1))(1 − f(ωp2)) in the G-matrix equation is re-
placed by 1 − f(ωp1) − f(ωp2) in the equation for the
retarded T -matrix

〈p|T (P, Ω)|p′〉 = V (p,p
′
)

+
∫

d3q

(2π)3
V (p,q)

(1 − f(ωp1) − f(ωp2))
Ω − ωp1 − ωp2 + iε

×〈q|T (P, Ω)|p′〉. (10)

The imaginary part of the retarded self-energy in the
T -matrix approximation is

ImΣ(p, ω) =
∫

d3k

(2π)3
(
f(ωk) + b(ω + ωk)

)

×〈(p − k)/2|ImT (|p + k|, ωk + ω)|(p − k)/2〉, (11)

where b(ω) is the Bose distribution. The above for-
mula can be obtained using the spectral representation
for the nucleon Green’s function and for the T -matrix
(here the Bose function appears) [15]. The real part of
the self-energy consists of the Hartree-Fock self-energy
and a dispersive contribution obtained from ImΣ:

ReΣ(p, ω) = ΣHF(p) + P
∫

dω
′

π

ImΣ(p, ω
′
)

ω′ − ω
. (12)
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The imaginary part of the self-energy is neglected lead-
ing to the quasi-particle approximation for the two-
nucleon propagator in the T -matrix (eq. (10)).

– Allowing for off-shell propagation of nucleons and tak-
ing the self-energy self-consistently (also its imaginary
part) requires the use of full spectral functions in the
calculation resulting in more complicated expressions
for the T -matrix and the self-energy [7,8]:

〈p|T (P, Ω)|p′〉 = V (p,p
′
)

+
∫

dω1

2π

∫
dω2

2π

∫
d3q

(2π)3
V (p,q)

(
1 − f(ω1) − f(ω2)

)
Ω − ω1 − ω2 + iε

×A(p1, ω1)A(p2, ω2)〈q|T (P, Ω)|p′〉, (13)

and

ImΣ(p, ω) =
∫

dω1

2π

∫
d3k

(2π)3
A(k, ω1)

×〈(p − k)/2|ImT (p + k, ω + ω1)|(p − k)/2〉
×

(
f(ω1) + b(ω + ω1)

)
, (14)

where

A(p, ω)=
−2ImΣ(p, ω)(

ω − p2/2m − ReΣ(p, ω)
)2

+ImΣ(p, ω)2

(15)
is the self-consistent spectral function of the nucleon.

– Finally, we present results for a simple Hartree-Fock
approximation. It is certainly not well suited for re-
alistic applications in nuclear matter. However, this
approach is Φ derivable and it is illustrative to check
its thermodynamic consistency explicitly. The Hartree-
Fock approximation with parameters given by eq. (6)
shows no saturation. We reduced the repulsive part of
the interaction λr

α by 1.15 for the Hartree-Fock calcu-
lation. This rescaling mimics the effect of ladder re-
summation which leads to a reduction of the repulsive
core.

Equations for all the approximations schemes have to be
solved iteratively, with a constraint on the total density.
The numerical method for the solution of the T -matrix
equation with off-shell propagators [9] has been general-
ized to the case of low and zero temperature. The details
of the numerical procedure will be given elsewhere.

3 Results for thermodynamic properties
around the saturation point

Only within the self-consistent T -matrix calculation is the
momentum distribution of nucleons

n(p) =
∫ µ

−∞

dω

2π
A(p, ω) (16)

different from the Fermi-Dirac distribution (fig. 2).
Clearly, a Fermi-liquid behavior is observed in the T -
matrix approximation, with a jump in the fermion density
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Fig. 2. Momentum distribution of nucleons for the full T -
matrix calculation compared to the free fermion distribution.
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Fig. 3. Fermi momentum as obtained in the full T -matrix
calculation (points) compared to the Fermi momentum of the
free fermion gas (solid line).

of
(

1 − ∂ReΣ(pF,ω)
∂ω |ω=EF

)−1

� 0.7 at the Fermi momen-

tum. In the calculation, the chemical potential µ = EF is
fixed by the constraint on the total density

∫ µ

−∞

dω

2π

∫
d3p

(2π)3
A(p, ω) = ρ . (17)

The corresponding Fermi momentum pF is defined by
EF = ωpF . For a conserving approximation, the Fermi
momentum should be the same as the Fermi momentum
of a free fermion gas [16,5]. Indeed, it is well satisfied for
a range of densities for the self-consistent T -matrix cal-
culation (fig. 3). All the other approximation discussed in
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Fig. 4. Binding energy per particle for the G-matrix calcu-
lation (solid line), the on-shell T -matrix calculation (dashed
line), the full T -matrix calculation (dotted line) and the
Hartree-Fock calculation (dash-dotted line) as a function of the
density. The corresponding Fermi energies are denoted by the
same lines with solid boxes, open boxes, full circles and stars
for the G-matrix, on-shell T -matrix, full T -matrix and Hartree-
Fock results, respectively. In the insert is shown a blow-up of
the region around the saturation point for the full T -matrix
calculation.

Table 1. Saturation density, Fermi energy, binding energy and
compression modulus for different approximations discussed in
the text.

approximation ρs/ρ0 EF E/N K
(MeV) (MeV) (MeV)

Hartree-Fock 1.55 −3.5 −3.5 87

G-matrix 1.42 −21.6 −10.9 107

T -matrix on shell 1.08 −18.9 −7.0 103

T -matrix 1.39 −9.9 −9.9 103

this work fulfill this relation trivially since they use quasi-
particles.

The energy per particle in the different approximations
can be obtained from the standard form of the energy
density

E/N =
1
ρ

∫
d3p

(2π)3

∫ µ

−∞

dω

2π

1
2

(
p2

2m
+ ω

)
A(p, ω) . (18)

Only for the self-consistent T -matrix the spectral func-
tion and the ω integration are non-trivial. For the other
approximation schemes the spectral function is a delta
function. In that case, the energy per particle can be ex-
pressed in the usual way using the single-particle potential
and kinetic energies.

In fig. 4 is plotted the energy per particle for different
approximations for a range of densities around the satu-
ration density. The G-matrix and the full T -matrix cal-
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Fig. 5. Pressure obtained using eq. (2) for the G-matrix cal-
culation (solid line), the on-shell T -matrix calculation (dashed
line), the full T -matrix calculation (dotted line) and the
Hartree-Fock calculation (dash-dotted line) as a function of
the density. The corresponding pressures obtained as a deriva-
tive of the binding energy (eq. (1)) are denoted by the same
lines with solid boxes, open boxes, full circles and stars for the
G-matrix, on shell T -matrix, full T -matrix and Hartree-Fock
results, respectively.

culations give very similar results for the binding energy.
The T -matrix with quasi-particle propagators gives some-
what different results, with lower saturation density and
smaller binding energy. This behavior is due to very strong
modifications of the effective mass around the Fermi mo-
mentum in the quasi-particle T -matrix approach. This ef-
fect is caused by the appearance of the pairing singularity
in the T -matrix [14,17,9]. In fact, the quasi-particle T -
matrix approximation is oversensitive to the presence of
the pairing singularity, since the use of full spectral func-
tions reduces the influence of the Cooper pair bound state
on the nucleon spectral function and the single-particle
energies [9,18].

In table 1 are shown the corresponding binding ener-
gies and saturation densities. The Hartree-Fock approxi-
mation gives significantly different results. It has a sat-
uration point only after a change of the parameters.
The Fermi energy obtained for different densities depends
very much on the approximation chosen. Only for consis-
tent approaches, i.e. Hartree-Fock and self-consistent T -
matrix, is the Hugenholz-Van Hove condition at the satu-
ration point satisfied. The difference between EF and E/N
at the saturation point is zero within numerical accuracy
for the Hartree-Fock and the self-consistent T -matrix cal-
culations, and becomes as large as 10.7 MeV for the G-
matrix and 10.9 MeV for the quasi-particle T -matrix ap-
proximations. In the case where the pairing effect is strong
(as in this work), the use of the quasi-particle T -matrix
does not cure the violation of the Hugenholz-Van Hove
property and moreover deforms the results for the binding
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energy and the effective mass [17,18]. It is different from
ref. [2] where the use of on-shell (i.e. non-self-consistent)
T -matrix approximation instead of the G-matrix reduces
the violation of the Hugenholz-Van Hove theorem at the
saturation point. It should be noted that, besides the
strong pairing force in our calculation, the overall violation
of the Hugenholz-Van Hove is stronger in the G-matrix
approach than for relativistic interactions used in ref. [2].
We observe a very good fulfillment of the Hugenholz-Van
Hove condition in the numerical solutions for Φ derivable
approaches with self-energies self-consistently taken into
account, which means for the T -matrix calculation the use
of self-consistent spectral functions in the propagators.

The pressure can be calculated for a range of densities
by two methods (eqs. (1),(2)) which should be equivalent.
However, only for the consistent approximations, we find
an approximate equivalence between the two formulas,
with very good agreement for the Hartree-Fock calcula-
tion (fig. 5). On the other hand, non-consistent approaches
give very different results. In particular, the point where
the pressure equals zero and the slope of the pressure vs.
density comes out differently for the two ways of calculat-
ing the pressure. The slope of the pressure as a function
of the density defines the compression modulus of nuclear
matter

K = 9
∂P

∂ρ
, (19)

which should be positive at the saturation point, as a con-
dition of stability.

As expected [19], non-consistent approximations give
reasonable results for the binding energy and not for
the Fermi energy. Thus, one should use eq. (1) for the
calculation of thermodynamic properties (in particular
K = 9 ∂

∂ρ

(
ρ2 ∂

∂ρ

(
E
N

))
). The compression modulus for dif-

ferent approximations is given in table 1. Its value is simi-
lar for different approximations using ladder resummation.
The values of K obtained are smaller than in usual nuclear
matter calculations because we reduced the strength of the
repulsive core.

4 Conclusion

We have investigate the thermodynamical consistency of
different approximations for nuclear matter. The Φ deriv-
able T -matrix approximation with off-shell propagators
is thermodynamically consistent (conserving) and fulfills
these relations. The same is true for the simple Hartree-
Fock approximation. On the other hand, the usual G-
matrix approximation violates badly the Hugenholz-Van
Hove relation for pressure at zero temperature. The dis-
agreement is not reduced when using a simplified version
of the T -matrix approach, i.e. when using the T -matrix

with on-shell quasi-particle propagators. The full T -
matrix and the G-matrix calculations give similar results
for E/N . The binding energy is a physical result that can
be used for the calculation of the pressure or compression
modulus also in the non-consistent G-matrix approach.
The same is not true for the Fermi energy which, for non-
consistent approaches, is unreliable and leads often to un-
physical results, if used in the thermodynamical relations.
We note that the use of the quasi-particle approximation
in the T -matrix resummation can lead to wrong results for
the the binding and Fermi energies if the effect of pairing is
important. This is true in the normal phase, slightly above
Tc [17,18] and in the expansion around the normal state
at zero temperature, as in this work. This leads to results
significantly different both from the usual G-matrix and
from the full self-consistent T -matrix calculation. The self-
consistent T -matrix and the G-matrix calculations are less
sensitive to the fact that we have neglected the superfluid
transition for cold nuclear matter [2,8,18].
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